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We agree with Wagenmakers, Wetzels, Borsboom, & van der Maas (2011) that there are 

advantages to analyzing data with Bayesian statistical procedures, but we argue that they 

have incorrectly characterized several features of Bem’s (2011) psi experiments and have 

selected an unrealistic Bayesian prior distribution for their analysis, leading them to 

seriously underestimate the experimental support in favor of the psi hypothesis. We provide 

an extended Bayesian analysis that displays the effects of different prior distributions on 

the Bayes factors and conclude that the evidence strongly favors the psi hypothesis over the 

null. More generally, we believe that psychology would be well served by training future 

generations of psychologists in the skills necessary to understand Bayesian analyses well 

enough to perform them on their own data. 

 In his article “Feeling the future: Experimental evidence for anomalous retroactive 

influences on cognition and affect,” Bem (2011) performed the standard statistical analyses 

familiar to most psychologists and concluded that all but one of his nine experiments yielded 

statistically significant support for the psi hypothesis. Across all nine experiments, the combined 

(Stouffer) z was 6.66, p = 1.34 × 10-11, with a mean effect size (d) of 0.22.  

 In their critique, Wagenmakers, Wetzels, Borsboom, & van der Maas (2011) performed a 

Bayesian analysis on those same data and concluded that “Bem’s p values do not indicate 

evidence in favor of precognition; instead, they indicate that experimental psychologists need to 
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change the way they conduct their experiments and analyze their data (abstract, p. xx).” How can 

we account for this stunning disagreement? 

 In this response, we seek to answer this question by challenging the particulars of 

Wagenmakers et al.’s (2011) analysis and to address the more general issue raised by the title of 

their article, “Why psychologists must change the way they analyze their data.”  

 Twenty five years ago, Efron (1986) published an article entitled “Why isn’t everyone a 

Bayesian?” in which he argued that scientists should adopt a combination of Bayesian and the 

more familiar “frequentist” methods for analyzing data. More recently, Bayesian statisticians 

Jessica Utts and Wesley Johnson—the second and third authors of this response—have also 

argued for a Bayesian approach, illustrating their point by performing a Bayesian meta-analysis 

of 56 experimental studies of telepathy (Utts, Norris, Suess, & Johnson, 2010). (Johnson is also 

the co-author of the article on Bayesian t tests that Wagenmakers et al. [2011] cite as the basis 

for their own analysis [Gönen, Johnson, Lu, & Westfall, 2005]). 

 We agree with Wagenmakers et al. (2011) to the extent that we believe psychology would 

be well served by training future generations of psychologists in the skills necessary to 

understand Bayesian analyses well enough to perform them on their own data. As Efron (1986) 

originally warned, however, Bayesian methods require a great deal of thought to apply correctly, 

and we believe that Wagenmakers et al. (2011) have incorrectly characterized several features of 

Bem’s experiments, leading them to select a prior distribution that seriously underestimates the 

support for the psi hypothesis. In particular, we believe they err in (1) treating Bem’s hypotheses 

as exploratory, thereby requiring two-sided tests, and (2) defining an unreasonable and 

unreasonably diffuse experimental hypothesis (H1) to test against the null (H0) by assuming that 

we have no prior knowledge on which to base a more reasonable and sharply focused H1. (An 

alternative Bayesian analysis by Rouder and Morey [2011] is also critical of Wagenmakers et al.) 
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The Hypotheses Were Not Exploratory 

 All nine experiments reported in Bem (2011) tested the single conceptual hypothesis that 

retroactive or time-reversed versions of common psychological effects would produce the same 

effects as the standard “forward” versions. Thus, if individuals prefer to approach positive 

stimuli and avoid negative stimuli, then they should be able to do so precognitively—before the 

valence of an upcoming stimulus has even been determined (Experiments 1 and 2). If individuals 

respond more quickly in judging a target stimulus to be pleasant or unpleasant after being 

exposed to a priming stimulus of the same valence, then they should respond more quickly even 

if the prime appears after rather than before they judge the target (Experiments 3 and 4).  

 If repeatedly exposing an individual to a highly arousing stimulus produces habituation so 

that a strongly negative stimulus becomes less negative and a strongly positive stimulus becomes 

less positive, then we should observe the same two complementary habituation effects even if the 

repeated exposures follow rather than precede the assessment of the individual’s affective 

reactions to the stimuli. (Experiments 5 and 6). And finally, if rehearsing a set of words enhances 

an individuals’ ability to recall them on a subsequent recall test, then they should display 

enhanced recall even if the rehearsal takes place after the recall test (Experiments 8 and 9). 

 These are all unambiguous, highly specific one-sided hypotheses generated from 

previously established (non-psi) psychological effects. Moreover, four of the nine experiments 

(Experiments 4, 6, 7, and 9) were themselves replications of the experiments immediately 

preceding them. Bem’s individual-difference hypothesis that participants high in Stimulus 

Seeking would show enhanced psi performances in his experiments was conceptually based on 

Eysenck’s (1966) theorizing about extraversion and psi performance and empirically based on a 

meta-analysis of 60 experiments in which the correlation between the two could be assessed 

(Honorton, Ferrari, & Bem, 1992). Across Bem’s experiments, those high in stimulus seeking 
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achieved an effect size (d) four times greater than that of other participants (0.43 vs. 0.10), 

providing additional conceptual coherence to his collected experiments. 

 Wagenmakers et al. (2011) specifically single out Experiment 1 as exploratory. That 

experiment was designed to test the hypothesis that participants could identify the future 

left/right position of an erotic image on the computer screen significantly more frequently than 

chance. The results showed that they could. The specificity of this hypothesis derives from 

several earlier “presentiment” experiments (e.g., Radin, 1997) which had demonstrated that 

participants showed anomalous “precognitive” physiological arousal a few seconds before seeing 

an erotic image but not before seeing a calm or nonerotic image. Accordingly, Experiment 1 also 

included randomly interspersed trials with nonerotic images, leaving as an open question 

whether participants might also be able to anticipate the future left/right positions of these 

images. They could not, a finding consistent with the results of the presentiment experiments. 

The important point here is that the central psi hypothesis about erotic images was unambiguous, 

directional, based on previous research, not conditional on any findings about trials with 

nonerotic images, and was not formulated from a post hoc exploration of the data. In fact, there 

was no data exploration that required adjustment for multiple analyses in this or any other 

experiment. 

 Perhaps the misunderstanding of this point derives from Bem’s practice of applying more 

than one statistical test to the primary dependent variables (e.g., both a parametric and a 

nonparametric test) and more than one statistical treatment to some of them (e.g., two different 

data transformations and two different outlier cutoff criteria on the reaction time data from the 

priming experiments). But far from being exploratory, these multiple analyses were explicitly 

confirmatory: They were specifically designed to confirm that the same conclusions held across 

different statistical treatments of the data. 
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H1 Should Reflect Prior Knowledge 

 Bayesian analyses are designed to pit the null hypothesis (H0) against a specified 

experimental hypothesis (H1). To perform a Bayesian analysis, one must specify two different 

types of prior belief. The first and most familiar is the prior odds that H0 is true versus H1’s being 

true. This is what Wagenmakers et al. (2011, p. xx) set at 99,999,999,999,999,999,999 to 1 odds 

in favor of H0. Specifying this type of prior belief gives deniers, believers and everyone in 

between the opportunity to express a transparent opinion before taking the data into account.  

 The second part of the prior is more complex and less transparent to those unfamiliar with 

Bayesian methods. It entails specifying explicitly the effect size probability for both H0 and H1. 

Specifying the effect size for H0 is easy because it is a single value of 0, but specifying H1 

requires specifying a range of values and a probability distribution over the range for what 

someone thinks in advance the true effect size might be if H1 were in fact true. 

 The “Bayes factor” (BF) indexes the posterior odds of H1 versus H0 (or the reverse) after 

the data are incorporated into the analysis. Numerically it equals the posterior odds for someone 

whose prior odds were one to one, that is, who initially assigned a prior probability of .5 to both 

H0  and H1. The posterior odds for other prior odds are calculated by simply multiplying those 

odds by the Bayes factor. Because the Bayes factor is independent of the prior odds, many 

mistakenly believe that it constitutes an objective assessment of the experimental results, 

uncontaminated by subjective beliefs. But this is not true because the Bayes factor depends on 

the specification of H1. 

 Accordingly, our second objection to Wagenmakers et al.’s analysis is that their choice of 

H1 is unrealistic. Specifically, they assume that we have no prior knowledge of the likely effect 

sizes that the experiments were designed to detect. As Utts et al. (2010) argue, 
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It is rare that we have no information about a situation before we collect data. If we 

want to estimate the proportion of a community that is infected with HIV, do we 

really believe it is equally likely to be anything from 0 to 1? If we want to estimate 

the mean change in blood pressure after 10 weeks of meditation, do we really 

believe it could be anything from  -∞ to  +∞? Even the choice of what hypotheses to 

test, and whether to make them one-sided or two-sided is an illustration of using 

prior knowledge (p. 2). 

 In general, we know that effect sizes in psychology typically fall in the range of 0.2 to 0.3. 

For example, Bornstein’s (1989) meta-analysis of 208 mere exposure experiments—the basis of 

Bem’s retroactive habituation experiments—yielded an effect size (r) of 0.26. We even have 

some knowledge about previous psi experiments. The meta-analysis of 56 telepathy studies, cited 

above, revealed a Cohen’s h effect size of approximately 0.18 (Utts et al., 2010), and a meta-

analysis of 38 “presentiment” studies—from which Bem’s experiments 1 and 2 derived—yielded 

a mean effect size of 0.26 (Mossbridge, Tressoldi, and Utts, 2011).  

 Surely no reasonable observer would expect effect sizes in laboratory psi experiments to be 

greater than 0.8—what Cohen (1988) calls a large effect. (Cohen notes that even a medium effect 

of 0.5 “is large enough to be visible to the naked eye” [p. 26].) Yet the “default prior” that 

Wagenmakers et al. (2011) use (known as the standard Cauchy distribution) has probability 0.57 

that the absolute value of the effect size exceeds 0.8. It even places probability of 0.12 on effect 

sizes with absolute values exceeding 5.0, and probability of 0.06 on effect sizes with absolute 

values exceeding 10! If the effect sizes were really that large, there would be no debate about the 

reality of psi. Thus, the prior distribution they have placed on the possible effect sizes under H1 

is wildly unrealistic. 

 When the null hypothesis is sharply defined but the prior distribution on the alternative 

hypothesis is diffused over a wide range of values, it is more likely that the probability of any 

observed data will be higher under the null hypothesis than under the alternative. This is known 
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as the Lindley-Jeffreys paradox: A frequentist analysis that yields strong evidence in support of 

the alternative hypothesis can be contradicted by an inappropriate Bayesian analysis that 

concludes that the same data are more likely under the null. Christensen et al. (2011) discuss an 

example comparable to the analysis by Wagenmakers et al. (2011), noting that “the moral of the 

Lindley-Jeffreys paradox is that if you pick a stupid prior, you can get a stupid posterior (p. 60).”  

Testing Alternative Prior Distributions for H1 

 We now examine what happens when more realistic prior distributions are used to define 

H1. Because the tests reported in Bem’s original article were justifiably one-sided, we begin by 

using prior distributions that include positive effect sizes only. Modifying Gönen et al. (2005) for 

a one-sided situation, we used a half-normal distribution starting at 0 for our alternative priors. 

The only parameter required for this distribution is the spread, and so we specified the value 

corresponding to the 90th percentile of the distribution.  

 We call our first alternative prior the “Knowledge-Based prior,” because it reflects what we 

already know about effect sizes typically observed in psychological research, including previous 

psi research. Using the earlier outcomes for guidance, we set the 90th percentile to be an effect 

size of 0.5. Someone with this prior believes that if precognition is real, the true effect size is less 

than or equal to 0.5 with probability 0.9. For comparison, we also display the results of using a 

two-sided version of the Knowledge-Based prior, which reflects the alternative hypothesis that 

the absolute value of the true effect size is less than or equal to 0.5 with probability 0.9. For the 

“Skeptic’s Prior” we set the 90th percentile to be only 0.05, reasoning that a skeptic might think 

an effect between 0 and 0.05 might occur due to possible artifacts or even a very small but 

unimportant psi effect, but that an effect size greater than 0.05 would be unlikely. And finally, 

we calculate the half-Cauchy prior, which is equivalent to the one-sided version or upper half of 

the two-sided prior used by Wagenmakers et al. (2011). 
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 As in Rouder et al. (2009) and consistent with the way Bem generated his data, we assume 

that the data values are normal with mean µ and variance σ2, with the Jeffreys’ prior (1961) 

serving as the standard reference prior for the variance in this model. For all our computations 

we used Markov chain Monte Carlo simulations with the statistical software WinBUGS (Lunn, 

Thomas, Best & Spiegelhalter, 2000) to get numerical approximations. 

 First, we computed the Bayes factor for H1 to H0 for each of the nine experiments under the 

four priors. (Wagenmakers et al. [2011] actually present Bayes factors of H0 to H1, but it is easier 

here to interpret the reciprocal, H1 to H0. See, for example, Bayarri and Berger’s [1991] Bayesian 

analysis of psi data.) Using the assumption that the effect sizes under H1 for the separate 

experiments are independent and are drawn from a single effect size distribution, we also 

calculated a Bayes factor for the nine experiments combined by computing the product of the 

separate Bayes factors under each of the priors. And finally, for these Bayes factors we 

calculated the associated posterior probability that H0 is true for all of the experiments (when the 

prior probability on all H0  being simultaneously true is .5). In this analysis, we assume that 

either all null hypotheses are true or all alternative hypotheses are true. The results are shown in 

Table 1. Wagenmakers et al.’s (2011) results are shown in the last column, and the combined 

Bayes factors and posterior probabilities on H0 are shown in the bottom two rows.  

 The most striking finding is that under the knowledge-based prior, the Bayesian analysis 

yields exactly the same conclusions as Bem’s (2011) original frequentist analysis. Using 

Jeffreys’ (1961) verbal labels for characterizing the size of a Bayes factor (BF), every 

experiment (except Experiment 7, as in Bem [2011]) shows either “strong” (BF > 10) or 

“substantial” (BF > 3) evidence in favor of H1. The combined Bayes factor of 5,184,907 easily 

exceeds his criterion for “extreme” evidence in favor of H1 (BF > 100), with a posterior 

probability on the composite H0  of 1.9 × 10-7. Even the two-sided version of that same prior H1 

distribution yields “extreme” evidence in favor of the psi alternative, with a posterior probability 
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on the composite H0  of 7.3 × 10-5. Finally, both the Skeptic’s prior and the one-sided Cauchy 

prior also yield “extreme” evidence in favor H1. Only the two-sided Cauchy prior used by 

Wagenmakers et al. (2011) fails to show strong support for the psi hypothesis.  

Table 1  

Bayes Factors (BF) H1 to H0 for Five Prior Distributions on H1 

Experiment Knowledge- 
Based Prior 

 

Knowledge-
Based Prior 
(Two-Sided) 

Skeptic’s 
Prior 

 

Cauchy 
One-Sided  

Cauchy  
Two-sided 

(Wagenmakers et al.)a 

1  9.62 4.94 1.86 3.09 1.64 

2  6.89 3.45 2.07 2.04 1.05 

3 10.42 5.35 1.86 3.43 1.82 

4   3.41 1.76 1.59 1.03 0.58 

5   5.37 2.74 1.72 1.70 0.88 

6   7.40 3.78 2.11 2.21 1.10b 

7   0.90 0.50 1.45 0.23 0.13 

8   3.16 1.62 1.57 0.92 0.47 

9 19.48 10.12 1.64 9.85 5.88 

Combined  5,184,907 13,668.9 154.3 174.4 0.632 

Posterior pr all H0  1.9 × 10-7 7.3 ×10-5 0.0064 0.0057 0.61 

a Wagenmakers et al. (2011) reported Bayes factors of H0 to H1, so the figures in this column are 
  the reciprocals (H1 to H0) of their numbers. 

bWagenmakers et al. evaluated two separate t tests reported by Bem for Experiment 6; we used  
  the combined t test and have updated their Bayes factor to correspond to that combined t test. 
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 In an online appendix to their article, Wagenmakers et al. (2011) claim to show that their 

conclusions are robust across different priors for H1, but they restrict their discussion to two-

sided Cauchy priors that are still very diffuse, and they never consider the combined evidence 

across all of the experiments. For example, if they had simply considered a two-sided Cauchy 

prior that places 90% of the probability on effect sizes with absolute value less than 0.5—like 

our two-sided Knowledge-Based prior distribution—they, too, would have discovered “extreme” 

evidence in favor of H1, namely, a composite Bayes factor of 1,964 and a posterior probability 

on the composite H0 of 0.0005. 

 Critics of using Bayesian analyses for psi hypotheses frequently point out the reductio ad 

absurdum case of the extreme skeptic who believes psi to be impossible, that is, who holds the 

prior probability of 0 for the psi alternative. In this case, no finite amount of data can raise the 

posterior probability in favor of the alternative hypothesis above 0 or, alternatively, lower the 

posterior probability in favor of the null below 1. This extreme case does, however, raise the 

question of how close to 0 the prior probability for the alternative would need to be to maintain a 

posterior probability close to 0.95 for the null. For the Knowledge-based prior, one’s prior 

probability that the alternative is true would have to be 10-8 (or 1 - 10-8 that the null is true). 

Thus, when taking the combined data into account it would take a mighty strong prior belief in 

the null hypothesis to retain even a reasonably high posterior belief in it. Of course 

Wagenmakers et al. (2011) admit that they do indeed have more than a mighty strong belief in 

the null hypothesis (1 - 10-20), so even the posterior probability of 1.9 × 10-7 obtained with the 

Knowledge-based prior would not convince them, as it might convince a skeptic with a less 

extreme position. 

Here Be Dragons 

 In choosing to present the standard frequentist analysis of his data, Bem (2011) noted that 



 Response to Wagenmakers et al.   11 

There are, of course, more sophisticated statistical techniques available…but they do not 

yet appear to be widely familiar to psychologists and are not yet included in popular 

statistical computer packages, such as SPSS. I have deliberately not used them for this 

article. It has been my experience that the use of complex or unfamiliar statistical 

procedures in the reporting of psi data has the perverse effect of weakening rather than 

strengthening the typical reader’s confidence in the findings.… [T]his is understandable. If 

one holds low Bayesian a priori probabilities about the existence of psi—as most 

academic psychologists do—it might actually be more logical from a Bayesian perspective 

to believe that some unknown flaw or artifact is hiding in the weeds of…an unfamiliar 

statistical analysis than to believe that genuine psi has been demonstrated (p. xx). 

 Ironically, Wagenmaker et al.’s (2011) critique itself provides an illuminating example of 

how hidden assumptions can lurk “in the weeds” of an unfamiliar statistical analysis—albeit here in 

the service of proclaiming the null hypothesis.  

Medieval maps used to mark unknown or unexplored territories with the warning “Here Be 

Dragons.” Until a new generation of psychologists becomes as familiar with Bayesian analyses as 

their mentors have become with frequentist analyses, a similar warning would seem appropriate. 
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